Alarm Horn Sounder

D1xS1R

D1xS1F

1) Product Table

Unit Type Code	Nominal Input Voltage	Nominal Input Current	Voltage Range	Sound Pressure Level dB(A)	
				Max*	Nom ${ }^{\text { }}$
D1xS1RDC024-D	12 Vdc	221 mA	11.5-54Vdc	94	90
	24 Vdc	185 mA			
	48 Vdc	115 mA			
D1xS1RAC230-D	115 Vac	73 mA	100-240Vac $50 / 60 \mathrm{~Hz}$		
	230 Vac	48 mA			
D1xS1FDC024-D	12 Vdc	221 mA	$11.5-54 \mathrm{Vdc}$	98	94
	24 Vdc	185 mA			
	48 Vdc	115 mA			
D1xS1FAC230-D	115 Vac	73 mA	100-240Vac $50 / 60 \mathrm{~Hz}$		
	230 Vac	48 mA			

*Max = Tone 4
${ }^{\dagger}$ Nom. $=$ Tone 44

The table shows the input current taken by the various sounders.
The current levels shown above are for the 440 Hz Continuous tone @ nominal input voltage. Nominal current at nominal voltage.

Table 1: Electrical Ratings.

2) Warnings

CAUTION
TO REDUCE THE RISK OF IGNITION OF HAZARDOUS ATMOSPHERES:
DISCONNECT FROM SUPPLY BEFORE OPENING.
KEEP TIGHTLY CLOSED WHEN IN OPERATION.
WARNING
FIT SEALING FITTING IN CONDUIT RUNS WITHIN 18 INCHES FROM ENCLOSURE.
EQUIPMENT MUST NOT BE INSTALLED WITH THE HORN FACING UPWARDS OF HORIZONTAL
DO NOT OPEN WHEN AN EXPLOSIVE ATMOSPHERE IS PRESENT
DO NOT OPEN WHEN ENERGISED
POTENTIAL ELECTROSTATIC CHARGING HAZARD - CLEAN ONLY WITH A DAMP CLOTH
ENCLOSURE ENTRIES: TWIN M20 X 1.5 / SINGLE 1/2" NPT ATEX/IECEx INSTALLATIONS: IF TEMPERATURE EXCEEDS $70^{\circ} \mathrm{C}$ AT ENTRY OR $80^{\circ} \mathrm{C}$ AT BRANCHING POINT USE SUITABLE RATED CABLE AND GLANDS

ATTENTION

POUR REDUIRE LE RISQUE D'INFLAMMATION DES ATMOSPHĖRES DANGEREUSES:
COUPER L 'ALIMENTATION AVANT OUVERTURE.
CONSERVER FERMÉ PENDANT LE FONCIONNEMENT.
AVERTISSEMENT
CONDUITS DOIVENT ETRE SCELLES EN MOINS DE 18 POUCES. ÉQUIPEMENT NE DOIT PAS ETRE INSTALLE AVEC LE KLAXON TOURNEE VERS LE HAUT DE HORIZONTAL.
NE PAS OUVRIR UN PRESENCE D'ATMOSPHERE EXPLOSIVE NE PAS OUVRIR ENERGIE
DANGER POTENTIEL CHARGE ÉLECTROSTATIQUE - NETTOYER UNIQUEMENT AVEC UN CHIFFON HUMIDE
ENTRÉES DE BOÎTIER: $2 \times \mathrm{M} 20 \times 1.5 / 1 \times 1 / 2$ " NPT
ATEX/IECEx INSTALLATIONS: SI LA TEMPÉRATURE DÉPASSE 70 ${ }^{\circ} \mathrm{C}$ À L'ENTRÉE OU $80{ }^{\circ} \mathrm{C}$ AU POINT DE BRANCHEMENT, UTILISER UN CÂBLE ET DES JOINTS D'ÉTANCHÉITÉ APPROPRIÉS

3) Marking \& Rating Information

The D1xS1 Alarm Horns comply with the following standards for hazardous locations:

3.1 Class/Division Ratings for US \& Canada

Standards	
Class I UL 1203 \& CSA C22.2 No 25-1966	
Class Division Ratings for US (NEC)	
Model No:	Rating
$\begin{aligned} & \text { D1xS1-DC024-D / } \\ & \text { D1xS1-AC230-D } \end{aligned}$	Class II Div 1 FG T6 Ta $-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Class III Div 1$\quad \mathrm{Ta}-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Class Division Ratings for Canada (CEC)	
Model No:	Rating
D1xS1-DC024-D	Class II Div 1 FG T6 Ta $-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Class III Div $1 \quad \mathrm{Ta}-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
D1xS1-AC230-D	Class II Div 1 FG T6 $\mathrm{Ta}-55^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ Class III Div $1 \quad \mathrm{Ta}-55^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Class Zone Ratings for US (NEC)	
Model No:	Rating
$\begin{aligned} & \text { D1xS1-DC024-D / } \\ & \text { D1xS1-AC230-D } \end{aligned}$	Class II Zone 20 IIIB T6 Ta $-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Class Zone Ratings for Canada (CEC)	
Model No:	Rating
D1xS1-DC024-D	Class II Zone 20 IIIB T6 Ta $-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
D1xS1-AC230-D	Class II Zone 20 IIIB T6 Ta $-55^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Installation must be carried out in compliance with the National Electric Code / Canadian Electric Code	
Ambient Temperature Range	
$-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$	
IP Rating	
IP66 to EN60529 4/4X / 3R / 13 to	UL50E / NEMA250

4) Special Conditions for Safe Use

To access the Ex d chamber, loosen the M4 grub screw on the sounder cover. Open the enclosure by turning the sounder cover counterclockwise and remove the cover.

Electrical connections are to be made into the terminal blocks on the PCBA, using solid wire $0.5-4 \mathrm{~mm} 2$ / AWG 20-12 or stranded wire, sizes $0.5-2.5 \mathrm{~mm} 2$ / AWG 24-14. Wire insulation needs to be stripped 8 mm . Wires may be fitted securely with crimped ferrules. Terminal screws need to be tightened down with a tightening torque of 0.45 $\mathrm{Nm} / 3.5 \mathrm{Lb}-\mathrm{in}$

Internal earthing connections should be made to the Internal Earth terminal in the base of the housing using a ring crimp terminal to secure the earth conductor under the earth clamp. The earth conductor should be at least equal in size and rating to the incoming power conductors but at least a mini mum of 0.82 mm 2 / 18AWG in size.
External earthing connections should be made to the M5 earth stud, using a ring crimp terminal to secure the earth conductor to the earth stud. The external earth conductor should be at least 4 mm 2 in size.

On completion of the installation the flameproof threaded joint should be inspected to ensure that they are clean and that they have not been damaged during installation.

Ensure the O-ring seal is in place and undamaged.
When fitting the flameproof cover ensure the thread is engaged correctly. Fully tighten the cover all the way, ensure no gap is visible between the cover and base of the sounder enclosure.

The cable entries have two M20 x $1.5-6 \mathrm{H}$ entry thread and a single $1 / 2$ " NPT thread. If the installation is made using cable glands, only suitably rated and certified cable glands must be used. They must be suitable for the type of cable being used and also meet the requirements of the current installation standards EN 60079-14 / IEC60079-14.

If the installation is made using conduit, openings must have a sealing fitting connected within 18" of enclosure.

Any unused cable entries must be closed with suitably rated and certified blanking plugs.

The plastic horn is not anti-static and the metallic enclosure has a non-conductive coating. These may generate an ignition-capable level of electrostatic charges under certain extreme conditions. The user should ensure that the equipment is not installed in a location where it may be subjected to external conditions that might cause a build-up of electrostatic charges on non-conducting surfaces.

Repair of the flameproof threaded joints and cemented joints is not permitted.

The Equipment must not be installed with the horn facing upwards of horizontal.

Only the explosionproof cover is to be used for access to the enclosure for installation, service and maintenance.

5) Product Mounting and Access

5.1 Mounting

The D1x Alarm Horn may be secured to any flat surface using at least two of the three or four 7 mm fixing holes. The enclosure provides IP66 protection and is suitable for installation in exterior locations providing it is positioned so that water cannot collect in the horn, and the cable entry is sealed.

Fig 1: Mounting Locations

5.2 Installation procedure

a. Secure the D1x unit to a flat surface via the three 7 mm fixing holes in the mounting bracket.
b. Remove the explosionproof cover of the alarm horn by unscrewing it, taking care not to damage the explosionproof threads in the process (Refer to section 5).
c. Fit an M20/NPT suitably rated cable gland or conduit entry into the hole in the enclosure and connect the field wiring to the appropriate alarm horn terminals as shown in fig. 6 (AC) or fig 8. (DC). The power supply terminals are duplicated so that units may be connected in parallel. An end of line monitoring resistor may be fitted to DC units only (see section 12). If the second and third M20/NPT entries are not used, suitably rated stopping plugs must always be fitted.
d. Replace the explosionproof cover of the loudspeaker, taking care not to damage the explosionproof threads. Tighten fully.

5.3 Hornless Variants

The D1x Sounder is also available as a variant with no horn fitted in the factory. The Horn threaded nose portion has a fitment thread of $1-3 / 8$ " - 18 UNF (to BS1580 or ANSI B1.1). The customer is responsible for sourcing and correctly fitting a suitable horn that meets all of the relevant safety requirements.

5.4 Access to the Explosionproof Enclosure

Fig 2: Accessing the enclosure
To access the Ex d chamber, loosen the M4 grub screw on the sounder cover. Open the enclosure by turning the sounder cover counterclockwise and remove the cover. Take extreme care not to damage the explosionproof threads in the process.

6) Installation Requirements

6.1 Safe Installation Requirements

Warning - High voltage may be present, risk of electric shock.
DO NOT open when energised, disconnect power before opening.
The sounder must only be installed by suitably qualified personnel in accordance with the latest issues of the relevant standards.

The product must only be installed by suitably qualified personnel in accordance with the latest issues of the relevant standards.

The installation of the units must also be in accordance with the NEC / CEC and any local regulations and should only be carried out by a competent electrical engineer who has the necessary training.

6.2 Cable Selection and Connections

When selecting the cable size, consideration must be given to the input current that each unit draws (see table 1), the number of sounders on the line and the length of the cable runs. The cable size selected must have the necessary capacity to provide the input current to all the sounders connected to the line.

Figure 3: Wire Preparation.
When connecting wires to the terminals great care should be taken to dress the wires so that when the cover is inserted into the chamber the wires do not exert excess pressure on the terminal blocks. This is particularly important when using cables with large cross-sectional areas such as $2.5 \mathrm{~mm}^{2}$.

6.3 Earthing

Please note that for AC supply voltage product versions the Earth terminal on the PCBA does not provide an earth connection to the product enclosure. The enclosure must be independently earthed using either the external or internal earth fixing point, (see fig 4 and notes below).

The unit has both a primary internal and secondary external earth fixing point.

Internal earth connections should be made to the internal Earth terminal in the base of the housing using a ring crimp terminal to secure the earth conductor under the earth clamp.

External earth connections can be made to the M5 earth stud (see Fig. 2), using a ring crimp terminal to secure the earth conductor to the earth stud. The external earth conductor should be at least $4 \mathrm{~mm}^{2}$ in size.

The external earth crimp ring should be located between the two M5 plain washers provided and securely locked down with the M5 spring washer and M5 nut.

The earth conductor should be at least equal in size and rating to the incoming power conductors but at least a minimum of $0.82 \mathrm{~mm}^{2} / 18 \mathrm{AWG}$ in size.

6.4 Cable Glands, Blanking Elements \& Adapters

Ingress Protection

If a high IP (Ingress Protection) rating is required then a suitable sealing washer must be fitted under the cable glands or blanking plugs. A minimum ingress protection rating of IP6X must be maintained for installations in explosive dust atmospheres.

To maintain the ingress protection rating and mode of protection, the cable entries must be fitted with suitably rated cable entry and/or blanking devices during installation.

If entries are fitted with adaptors they must be suitably rated for the application. Fitting of blanking elements into adaptors is not permitted.

Adapters

The GNEx sounder range can be supplied with the following types of adapters:

M20 to ½" NPT
M20 to $3 / 4$ " NPT
M20 to M25
It is important to note that stopping plugs cannot be fitted onto adapters, only directly onto the M20 entries.

Any other adapters used must be suitably rated and certified.
If the installation is made using conduit, openings must have a sealing fitting connected as close as practical to the wall of the enclosure, but in no case more than the size of the conduit or 50 mm , whichever is the lesser.

7) Settings

Following illustrations show the settings available for D1xS1 Alarm Horn Sounders. See schematic diagram D190-06-001 for details.

7.1 Configuration

See Table 1 for product power supply and Sound Pressure Levels (SPL).

Configuration for DC Units

Figure 4: DC PCBA.

Configuration for AC Units

Figure 5: AC PCBA

7.2 Stage Switching Polarity (DC Units)

Switching from positive switching (default) to negative switching - DC Only.

NOTE: Max supply is 33 V DC - if higher DC voltage is required, use Negative switching.

Figure 6: Stage Switching Polarity.

7.3 Tone Selection

The D1x Alarm Horn Sounders have 64 different tones that can be selected independently for the first and second stage alarms. The tones are selected by operation of the tone setting DIP switch $1 \&$ DIP 2witch 2 (see figures 6 and 7) on the PCB, for stage 1 and stage 2 respectively.

$(O N=1, O F F=0)$
Figure 7: DIP switch configuration

The sounder can also be switched to sound the third and fourth stage alarm tones.

The tone table (D221-95-001-IS) shows the switch positions for the 64 tones on first and second stages and which tones are available for the third and fourth stages dependent on the Stage 1 DIP switch setting.

Following table (Table 3) is a summary of DC: D190-06-001; AC: D190-06-005 wiring options.
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { Config. } & \text { Voltage } & \text { Configuration Description } & \text { Features } & \begin{array}{l}\text { Product } \\ \text { Option } \\ \text { Identifier }\end{array} \\ \hline \text { 1a } & \text { DC } & \text { Single Stage Configuration } & \begin{array}{l}\text { • }\end{array} \\ \hline \text { 1b } & \text { DC } & \text { Two monitoring } \\ \text { Positive Switching }\end{array}\right)$

Table 3: Summary of Wiring Options. See Document D190-06-001 for DC Schematic Diagrams; D190-06-005 for AC Schematic Diagrams.

8) End of Line Monitoring (DC Units)

8.1 Standard DC End Of Line Monitoring

All DC units have a blocking diode fitted in their supply input lines. An end of line monitoring diode or an end of line monitoring resistor can be connected across the +ve and -ve terminals in the flameproof chamber. If an end of line resistor is used it must have a minimum resistance value of 3 k 3 ohms and a minimum wattage of 0.5 W or a minimum resistance value of 500 ohms and a minimum wattage of 2 W .

The resistor must be connected directly across the +ve and -ve terminals as shown in the following drawing. The resistor leads should be kept as short as possible. See D190-06-001 for details.

Figure 8: End of Line Resistor placement.
Note that the maximum forward polarity monitoring voltage is 6 V . A monitoring voltage greater than 6 V may activate the alarm horn sounder and the 2nd, 3rd or 4th stages.

8.2 Custom DC Multi-Stage End Of Line Monitoring

An optional 12-way terminal module is available to enable up to four alarm stages to be activated from three DC voltage output channels. The three alarm stage activation inputs can be independently monitored.

Refer to Schematic D190-06-001, Config. 6.
Specify Product option 'V' when ordering.
Spare part code for field installation: SP78-0001

Figure 9: End of Line Resistor placement Optional 12-Way Terminal Module.

9) Maintenance, Overhaul and Repair

Maintenance, repair and overhaul of the equipment should only be carried out by suitably qualified personnel in accordance with the current relevant standards:

Flameproof threaded joints and cemented joints are not permitted to be repaired.

Units must not be opened while an explosive atmosphere is present.
If opening the unit during maintenance operations, a clean environment must be maintained and any dust layer removed prior to opening the unit.

Potential electrostatic charging hazard - Clean only with a damp cloth.

10) SIL 2 Reliability Data

Reliability and Functional safety IEC/EN61508 which has been assessed and is considered suitable for use in low demand safety function:

1. Random Hardware Failures and Architectural constraints (route 2H).
2. As an unvoted item (i.e. hardware fault tolerance of 0) at SIL 2. The product was assessed against failure modes:

- Failure respond to an input by sounding sounder.
- Spurious sound output despite no input.

3. When employing the device in a SIL2 compliant system the user should ensure frequent or continuous automatic monitoring of continuity.

Integrity in respect of failure to function	SIL2 \& SIL1
Total Failure rate	0.55 pmh
"Hazardous" failure rate (revealed)	0 pmh
"Hazardous" failure rate (unrevealed)	0.55 pmh
"Safe" failure rate (revealed)	0 pmh
"Safe" failure rate (unrevealed)	0
System type	B
Hardware Fault Tolerance	0
Diagnostic Coverage	$>80 \%$
PFD (hazardous failure)	2.4×10^{-3}
Proof Test Interval	Up to 1 year

- All models are approved for use as Audible Signal Appliance for use as General Signaling: UL464A \& CSA C22.2 No 205-17
- Type 4 / 4X / 3R / 13, IP66
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} /-67^{\circ} \mathrm{C}$ to $+176^{\circ} \mathrm{F}$
General Signaling Canada:
D1xS1-AC230-A: $-55^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C} /-67^{\circ} \mathrm{F}$ to $+104^{\circ} \mathrm{F}$
D1xS1-DC024-A, D1xS1-DC024-S: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} /-67^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$
- To maintain Ingress Protection, cable entries must be fitted with suitably rated cable glands or stopping plugs
- EOL Monitoring (DC Only): End of Line Devices may be fitted between the + ve $\&-v e$ terminals of the PCBA. Please ensure that the device legs meet the wire size range stated for the connection terminals and are fitted correctly in order to avoid a short. Refer to the compatible control panel specification for EOL device values and ratings

Model	Nominal Voltage	Voltage Range	P1 Nominal Operating Current ${ }^{\#}$	P2 Nominal Operating Current ${ }^{\#}$	P3 Nominal Operating Current ${ }^{\#}$	P1 Max Operating RMS*	P2 Max Operating RMS*	P3 Max Operating RMS
D1xS1-DC024-A	12 V dc	$11.5-54 \mathrm{~V}$ dc	221 mA	-	-	221 mA	-	-
	24 V dc		185 mA	-	-			
	48 V dc		115 mA	-	-			
D1xS1-AC230-A	115 V ac	$\begin{gathered} 100-240 \mathrm{~V} \text { ac } \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	73 mA	-	-	80 mA	-	-
	230 V ac		48 mA	-	-			
*Max Operating current for worst-case input voltage; Nominal current at nominal voltage and Tone 12								
Table 4: UL General Signaling Electrical ratings								

Stage 1 Set DIP SW 1 Tone No.	Tone Description	Tone Visual	$\begin{gathered} \hline \text { Stage } 1 \& 2 \\ \text { DIP SW } 1 / 2 \\ \text { Settings } \\ 123456 \\ \hline \end{gathered}$	Stage 3 Set DIP SW 1 (S3)	$\begin{gathered} \hline \text { Stage } 4 \\ \text { Set DIP } \\ \text { SW } 1 \\ (\mathrm{~S} 2+\mathrm{S} 3) \\ \hline \end{gathered}$
1	1000Hz PFEER Toxic Gas	1000Hz	000000	,	44
2	1200/500Hz @ 1 Hz DIN /PFEER P.T.A.P.		100000	3	44
3	$1000 \mathrm{~Hz} @ 0.5 \mathrm{~Hz}$ (1s on, 1soff) PFEER Gen. Alarm	$1000 \mathrm{~Hz} \varlimsup^{1 \mathrm{~s}}{ }_{\text {1s }}$	010000	2	44
4	1.4KHz-1.6KHz 1s, 1.6KHz-1.4KHz 0.5s NF C 48-265	$\begin{aligned} & 1600 \mathrm{~Hz} \\ & 1400 \mathrm{~Hz} \end{aligned}$	110000	24	1
5	$544 \mathrm{~Hz}(100 \mathrm{mS}) / 440 \mathrm{~Hz}(400 \mathrm{mS}) \mathrm{NF}$ S 32-001		001000	19	1
6	$1500 / 500 \mathrm{~Hz}$ - (0.5 s on , 0.5 s off) $\times 3+1 \mathrm{~s}$ gap AS4428	$\left.\begin{array}{r} 1500 \mathrm{~Hz} \\ 500 \mathrm{~Hz} \end{array} 0_{0.5 \mathrm{~s} \backslash} \quad 0.5 \mathrm{~s} \right\rvert\, \begin{aligned} & 0.5 \mathrm{~s} \backslash 0.5 \mathrm{~s} / 0.5 \mathrm{~s} \backslash 1 \mathrm{~s} \\ & \hline \end{aligned}$	101000	44	1
7	$500-1500 \mathrm{~Hz}$ Sweeping 2 sec on 1 sec off AS4428	$\begin{gathered} 1500 \mathrm{~Hz} \\ 500 \mathrm{~Hz} \end{gathered} /_{2 \mathrm{~s}} /_{1 \mathrm{~s}}$	011000	44	1
8	$500 / 1200 \mathrm{~Hz}$ @ 0.26 Hz (3.3son, 0.5 s off) Netherlands NEN 2575	$500 \mathrm{~Hz}$	111000	24	35
9	1000 Hz (1s on, 1s off) $\mathrm{x} 7+(7 \mathrm{~s}$ on, 1s off) IMO Code 1a		000100	34	1
10	1000 Hz (1s on, 1s off) C + (7 s on, 1s off) IMO Code 1a	1 sis	100100	34	1
11	$420 \mathrm{~Hz}(0.5$ s on, 0.5 s off) $\times 3+1$ s gap ISO 8201 Temporal Pattern	$\left.\left.\left.{ }^{420 \mathrm{~Hz}}{ }^{0.5 \mathrm{~s}}\right\|_{0.5 \mathrm{~s}} \sqrt{0.5 \mathrm{~s}}\right\|_{0.5 \mathrm{~s}}{ }^{0.5 \mathrm{~s}}\right\|_{1 \mathrm{~s}}$	010100	1	8
12	$1000 \mathrm{~Hz}(0.5 \mathrm{~s}$ on, 0.5 s off) $\mathrm{x} 3+1 \mathrm{~s}$ gap ISO 8201 Temporal Pattern	$\left.\left.1000 \mathrm{~Hz}{ }^{0.5 \mathrm{~s}}\right\|_{0.5 \mathrm{~s}}{ }^{0.5 \mathrm{~s}}\right\|_{0.5 \mathrm{~s}}{ }^{0.5 \mathrm{~s}}{ }_{1 \mathrm{~s}}$	110100	1	8
13	$\begin{aligned} & 422 / 775 \mathrm{~Hz}-(0.85 \text { on, } 0.5 \text { off }) \times 3+1 \mathrm{~s} \text { gap NFPA - } \\ & \text { Temporal Coded } \end{aligned}$	${ }_{500 \mathrm{~Hz}}^{1200 \mathrm{~Hz}} 0.85{ }_{0.5 \mathrm{~s}}$	001100	1	8
14	1000/2000Hz @ 1Hz Singapore	$\begin{aligned} & 2000 \mathrm{~Hz} \\ & 1000 \mathrm{~Hz} \end{aligned}{ }^{0.5 \mathrm{~s}}{ }_{0.5 \mathrm{~s}}$	101100	3	35
15	300 Hz Continuous (f=300)		011100	24	1
16	440 Hz Continuous (fe440)		111100	24	1
17	470 Hz Continuous (f)470)		000010	24	8
18	500 Hz Continuous IMO code 2 (Low) ($\ddagger=500$)		100010	24	8
19	554 Hz Continuous (f=554)		010010	24	8
20	660 Hz Continuous (f=660)		110010	24	35
21	800 Hz IMO code 2 (High) (f=800)	f(Hz)	001010	24	35
22	1200 Hz Continuous ($f=1200$)		101010	24	35
23	2000 Hz Continuous ($\ddagger=2000$)		011010	3	35
24	2400 Hz Continuous ($f=2400$)		111010	20	35
25	$440 \mathrm{~Hz} @ 0.83 \mathrm{~Hz}(50$ cycles/minute) Intermittent $\quad(\mathrm{f}=440, \mathrm{a}=0.6, \mathrm{~b}=0.6)$		000110	44	8
26	$470 \mathrm{~Hz} @ 0.9 \mathrm{~Hz}-1.1 \mathrm{~s}$ Intermittent $\quad(\mathrm{f}=470, \mathrm{a}=0.55, \mathrm{~b}=0.55)$		100110	44	8
27	$470 \mathrm{~Hz} @ 5 \mathrm{~Hz}-(5$ cycles/second) Intermittent $\quad(\mathrm{f}=470, \mathrm{a}=0.1, \mathrm{~b}=0.1)$		010110	44	8
28	$544 \mathrm{~Hz} @ 1.14 \mathrm{~Hz}-0.875 \mathrm{~s}$ Intermittent (f=470, a=0.43, b=0.44)		110110	24	8
29	$655 \mathrm{~Hz} @ 0.875 \mathrm{~Hz}$ Intermittent (f=655, a=0.57, b=0.57)		001110	24	8
30	660 Hz @0.28Hz-1.8sec on, 1.8sec off Intermittent $\quad(\mathrm{f}=660, \mathrm{a}=1.8, \mathrm{~b}=1.8)$		101110	24	8
31	$660 \mathrm{~Hz} @ 3.34 \mathrm{~Hz}-150 \mathrm{mS}$ on, 150 mS off Intermittent $\quad(\mathrm{f}=660, \mathrm{a}=0.15, \mathrm{~b}=0.15)$	$\left.\right\|^{a(s)}{ }_{b(s)}$	011110	24	8
32	745 Hz @ 1 Hz Intermittent ($\mathrm{F}=745, \mathrm{a}=0.5, \mathrm{~b}=0.5$)		111110	24	8
33	$800 \mathrm{~Hz}-0.25 \mathrm{sec}$ on, 1 sec off Intermittent ($f=800, a=0.25, \mathrm{~b}=1$)		000001	24	8
34	800 Hz @ 2Hz IMO code 3.a (High) Intermittent \quad (f=800, a=0.25, b=0.25)		100001	24	19
35	1000 Hz @ 1 Hz Intermittent ($\mathrm{f}=1000, \mathrm{a}=0.5, \mathrm{~b}=0.5$)		010001	24	19
36	2400 Hz @ 1 Hz Intermittent ($\mathrm{f}=2400, \mathrm{a}=0.5, \mathrm{~b}=0.5)$		110001	24	19
37	2900 Hz @ 5Hz Intermittent ($\mathrm{f}=2900, \mathrm{a}=0.1, \mathrm{~b}=0.1$)		001001	24	19
38	$363 / 518 \mathrm{~Hz}$ @ 1 Hz Alternating (f=363, f1 $51518, \mathrm{a}=0.1)$		101001	8	19
39	$450 / 500 \mathrm{~Hz}$ @ 2 Hz Alternating ($\mathrm{f}=450, \mathrm{f} 1=500, \mathrm{a}=0.25$)		011001	8	19
40	$554 / 440 \mathrm{~Hz}$ @ 1 Hz Alternating (f=440, f1 $=554, \mathrm{a}=0.5)$	${ }^{\mathrm{f} 1(\mathrm{~Hz})}{ }^{\text {a }}$ (s) ${ }^{\text {ass }}$	111001	24	19
41	$554 / 440 \mathrm{~Hz} @ 0.625 \mathrm{~Hz}$ Alternating (f=440, f1=554, a $=0.8$)	Hz) ${ }^{\text {a(s) }}$	000101	8	19
42	$561 / 760 \mathrm{~Hz} @ 0.83 \mathrm{~Hz}(50$ cycles/minute) Alternating $\quad(\mathrm{f}=561, \mathrm{f} 1=760, \mathrm{a}=0.6)$		100101	8	19
43	$780 / 600 \mathrm{~Hz}$ @ 0.96 Hz Alternating ($f=600, \mathrm{f} 1=780, \mathrm{a}=0.52)$	$\begin{aligned} & \mathrm{f}(\mathrm{~Hz}) \overline{\mathrm{a}(\mathrm{~s})} \mathrm{a(s)} \\ & \mathrm{f}(\mathrm{~Hz}) \end{aligned}$	010101	8	19
44	800/1000Hz @ 2Hz Alternating (f=800, f1=1000, a=0.25)	$\begin{aligned} & f(\mathrm{~Hz}) \\ & \mathrm{f}(\mathrm{~Hz}) \quad \mathrm{a}(\mathrm{~s}){ }^{\mathrm{a}(\mathrm{~s})} \end{aligned}$	110101	24	19
45	970/800Hz @ 2Hz Alternating (f=800, f1 $1=970, \mathrm{a}=0.25)$	$\begin{aligned} & \mathrm{f} 1(\mathrm{~Hz}) \overline{\mathrm{a}(\mathrm{~s})} \mathrm{a(s)} \\ & \mathrm{f}(\mathrm{~Hz}) \end{aligned}$	001101	8	19
46	800/1000Hz @ 0.875Hz Alternating ($=8=800, \mathrm{f1} 1=1000, \mathrm{a}=0.57$)	${ }^{\text {f1 }}$ (Hz) ${ }^{\text {a }}$ a(s)	101101	24	19
47	2400/2900 Hz @ 2 Hz Alternating ($\mathrm{f}=2400, \mathrm{f} 1=2900, \mathrm{a}=0.25$)	$f_{(H z)}{ }^{(s)}{ }^{\text {a }}$	011101	24	19
48	$500 / 1200 \mathrm{~Hz}$ @ 0.3Hz Sweeping (f=500, f1=1200, a $=3.34$)		111101	24	12
49	$560 / 1055 \mathrm{~Hz} @ 0.18 \mathrm{~Hz}$ Sweeping (f=560, f1 $101055, \mathrm{a}=5.47)$	+	000011	24	12
50	$560 / 1055 \mathrm{~Hz}$ @ 3.3Hz Sweeping ($=560, \mathrm{f} 1=1055, \mathrm{a}=0.3)$		100011	24	12
51	600/1250Hz @ 0.125Hz Sweeping (f=600, f1=1250, a=8)	$\frac{\mathrm{f} 1(\mathrm{~Hz})}{\mathrm{f}(\mathrm{~Hz})}$	010011	24	12
52	660/1200Hz @ 1 Hz Sweeping (f=660, f1 $12000, \mathrm{a}=1$)		110011	24	12
53	800/1000Hz @ 1 Hz Sweeping ($f=800, f 1=1000, \mathrm{a}=1)$		001011	24	12
54	800/1000Hz @ 7Hz Sweeping ($f=800, \mathrm{f1}=1000, \mathrm{a}=0.14$)		101011	24	12
55	800/1000Hz @ 50Hz Sweeping (f=800, f1=1000, a=0.02)		011011	24	12
56	$2400 / 2900 \mathrm{~Hz}$ @ 7Hz Sweeping (f=2400, f1=2900, a $=0.14$)		111011	24	12
57	$2400 / 2900 \mathrm{~Hz}$ @ 1 Hz Sweeping (f=2400, f1=2900, a=1)		000111	24	12
58	$2400 / 2900 \mathrm{~Hz}$ @ 50 Hz Sweeping ($\mathrm{l}=2400, \mathrm{f1}=2900, \mathrm{a}=0.02)$		100111	24	12
59	2500/3000 Hz @ 2Hz Sweeping ($\mathrm{f}=2500, \mathrm{f} 1=3000, \mathrm{a}=0.5$)		010111	24	12
60	$2500 / 3000 \mathrm{~Hz}$ @ 7.7Hz Sweeping ($\mathrm{f}=2500, \mathrm{f1}=3000, \mathrm{a}=0.13$)		110111	24	12
61	800 Hz Motor Siren ($f=800, \mathrm{a}=1.6$)		001111	24	12
62	1200 Hz Motor Siren (f=1200, $\mathrm{a}=2$)	a(s)	101111	24	12
63	2400 Hz Motor Siren (f=2400, a=1.7)		011111	24	12
64	Simulated Bell	$1450 \mathrm{~Hz} \underset{\substack{0.25 \mathrm{~s} \\ 0.69 \mathrm{~ms}}}{0 .}$	111111	21	12

